Structure Reports

Online
ISSN 1600-5368

Naotake Nakamura* and Akira Ohishi

Department of Applied Chemistry, College of Science and Engineering, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu, Shiga 5258577, Japan

Correspondence e-mail:
nakamura@se.ritsumei.ac.jp

Key indicators

Single-crystal X-ray study
$T=296 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.038$
$w R$ factor $=0.116$
Data-to-parameter ratio $=16.6$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1,20-Dibromoicosane

The molecule of the title compound, $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{Br}_{2}$, is centrosymmetric and the skeleton has an all-trans conformation including both terminal Br atoms. In the crystal structure, the molecules form a layer in which the long axes of the molecules are inclined to the basal plane of the Br atoms. The layers are arranged in a zigzag manner between the neighboring layers, forming a herringbone motif, just like the smectic C_{A} phase of liquid crystals.

Comment

Normal long-chain aliphatic compounds, for example n-alkanes, have been studied to elucidate the principles of organic chemical crystallography and basic polymer science, because the molecular skeleton consists of a simple trans zigzag straight hydrocarbon chain. The molecular shape of these compounds can be regarded as rod-like, and the molecules in the crystalline state form a layered structure similar to those of the smectic liquid crystalline phase. Moreover, some of these compounds exhibit a high-temperature rotator phase just below their melting points, in which molecules have motional freedom to some degree as well as that in liquid crystals. As a result, normal long-chain aliphatic compounds have also been investigated as models for smectic liquid crystals.

In these investigations, it is important to obtain detailed crystallographic data. Many researchers have analyzed the crystal structures of many different kinds of normal long-chain aliphatic compounds, for example, n-alkanes (e.g. Nyburg \& Gerson, 1992), n-primary alcohols (e.g. Michaud et al., 2000), and α, ω-disubstituted n-alkanes, such as 1,12 -dibromododecane (Kulpe et al., 1981) and 11-bromoundecan-1-ol (Rosen \& Hybl, 1972). Recently, we have systematically analysed the crystal structures of the alkane- α, ω-diols containing $10-19$ and 21-23 C atoms (Nakamura et al., 2001; Uno et al., 2002), and we have studied the phase-transition phenomena of the series of the alkane- α, ω-diols containing 13-24 C atoms (Ogawa \& Nakamura, 1999). In the present paper, we report the crystal structure analysis of the title compound, (I), in order to elucidate the effect of the terminal groups in normal longchain aliphatic compounds.
The molecular structure of (I) is shown in Fig. 1. The molecule is centrosymmetric and all torsion angles are close to $\pm 180^{\circ}$, that is, the molecular skeleton including both terminal

Figure 1
The molecular structure of (I), showing the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. [Symmetry code: (i) $2-x,-y,-z$.]

Figure 2
The projection of the crystal structure of (I) along the b axis.

Figure 3
The projection of the crystal structure of (I) along the a axis.
Br atoms has an all-trans conformation. Fig. 2 shows the projection of the crystal structure of (I) along the b axis. The molecules form layers with a thickness of $c / 2$. In the layer, the long axes of the molecules are inclined to the $a b$ plane. This layer structure is similar to that of the triclinic structure of the even-numbered n-alkanes containing $6-24 \mathrm{C}$ atoms. It is considered that the arrangement in the layer is influenced by the steric and electrostatic repulsion of Br atoms at both ends. As a result, a molecular position in the layer slides along the direction of the long axis of the neighboring molecule.

Moreover, the layers are arranged in a zigzag manner between the neighboring layers, forming a herringbone motif similar to the tilt-smectic C phase and the smectic C_{A} phase of liquid crystals, as shown in Fig. 3. The layers are stacked closely in such a way that the $\alpha-\mathrm{CH}_{2}$ groups are allowed to fit into the grooves formed by Br atoms, with nearest contacts of 3.752 (3) Å, agreeing closely with the van der Waal contacts of $3.75 \AA$ (Rowland \& Taylor, 1996). Such a close packing is observed in the even-numbered alkane- α, ω-diols containing $4-19$ and 21-23 C atoms (e.g. Thalladi et al., 2000) and the α, ω dichloroalkanes containing 16, 20 and 26 C atoms (Takamizama et al., 1992).

The features in the molecular and crystal structure of (I) are similar to those of the homologous series with an even number of C atoms, viz. 1,12-dibromododecane (Kulpe et al., 1981), 1,14-dibromotetradecane (Uno \& Nakamura, 2003), 1,16-dibromohexadecane (Kobayashi et al., 1995), 1,18-dibromooctadecane (Nakamura et al., 1993), and 1,26dibromohexadecane (Takamizawa et al., 1992).

Experimental

Thin plate-like crystals of (I) were grown by slow evaporation of a solution containing a mixture of n-hexane and ethanol (1:1). The well developed face of the crystal is (001).

Crystal data

$\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{Br}_{2}$
$M_{r}=440.34$
Monoclinic, $P 2_{1} / n$
$a=5.482$ (4) \AA
$b=5.383(2) \AA$
$c=37.412(2) \AA$
$\beta=91.50(2)^{\circ}$
$V=1103.6(9) \AA^{3}$
$Z=2$

Data collection

Rigaku AFC-5R diffractometer
$\omega-2 \theta$ scans
Absorption correction: by integration (NUMABS; Higashi, 1999)
$T_{\text {min }}=0.325, T_{\text {max }}=0.997$
3004 measured reflections
2008 independent reflections
1667 reflections with $F^{2}>2 \sigma\left(F^{2}\right)$

Refinement

```
```

Refinement on F^{2}

```
```

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.038$
$w R\left(F^{2}\right)=0.116$
$w R\left(F^{2}\right)=0.116$
$S=1.00$
$S=1.00$
2008 reflections
2008 reflections
121 parameters
121 parameters
H -atom parameters constrained

```
H -atom parameters constrained
```

$$
\begin{aligned}
& w=\left(4 F_{o}^{2}\right) /\left[0.001 F_{o}^{2}+5.3 \sigma^{2}\left(F_{o}\right)+\right. \\
& 0.52] \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.38 \text { e } \AA^{-3} \\
& \Delta \rho_{\min }=-0.62 \mathrm{e} \AA^{-3} \\
& \text { Extinction correction: } \\
& \quad \text { (Larson, 1970) } \\
& \text { Extinction coefficient: } 21.3(3)
\end{aligned}
$$

```
\(D_{x}=1.325 \mathrm{Mg} \mathrm{m}^{-3}\)
\(\mathrm{Cu} K \alpha\) radiation
Cell parameters from 24
\(\quad\) reflections
\(\theta=9.5-15.5^{\circ}\)
\(\mu=4.61 \mathrm{~mm}^{-1}\)
\(T=296(1) \mathrm{K}\)
Plate, colorless
\(0.59 \times 0.47 \times 0.04 \mathrm{~mm}\)

\(R_{\text {int }}=0.028\)
\(\theta_{\text {max }}=70.1^{\circ}\)
\(h=-1 \rightarrow 6\)
\(k=0 \rightarrow 6\)
\(l=-45 \rightarrow 45\)
3 standard reflections
\(\quad\) every 150 reflections
intensity decay: \(6.8 \%\)

Table 1
Selected geometric parameters ( \(\left(\AA^{\circ}{ }^{\circ}\right.\) ).
\begin{tabular}{lrlr}
\hline \(\mathrm{Br} 1-\mathrm{C} 1\) & \(1.946(4)\) & \(\mathrm{C} 6-\mathrm{C} 7\) & \(1.510(5)\) \\
\(\mathrm{C} 1-\mathrm{C} 2\) & \(1.489(5)\) & \(\mathrm{C} 7-\mathrm{C} 8\) & \(1.514(4)\) \\
\(\mathrm{C} 2-\mathrm{C} 3\) & \(1.514(5)\) & \(\mathrm{C} 8-\mathrm{C} 9\) & \(1.509(5)\) \\
\(\mathrm{C} 3-\mathrm{C} 4\) & \(1.526(5)\) & \(\mathrm{C} 9-\mathrm{C} 10\) & \(1.518(4)\) \\
\(\mathrm{C} 4-\mathrm{C} 5\) & \(1.514(5)\) & \(\mathrm{C} 10-\mathrm{C} 10^{\mathrm{ii}}\) & \(1.507(5)\) \\
\(\mathrm{C} 5-\mathrm{C} 6\) & \(1.522(4)\) & & \\
\(\mathrm{Br} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3\) & \(-179.6(2)\) & \(\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8\) & \(179.2(3)\) \\
\(\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4\) & \(179.4(3)\) & \(\mathrm{C} 6-\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9\) & \(179.8(3)\) \\
\(\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5\) & \(179.7(3)\) & \(\mathrm{C} 7-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10\) & \(-179.8(3)\) \\
\(\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6\) & \(-179.7(3)\) & \(\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 10^{\mathrm{iii}}\) & \(179.7(3)\) \\
\(\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 7\) & \(178.8(3)\) & \(\mathrm{C} 9-\mathrm{C} 10-\mathrm{C} 10^{\mathrm{iii}}-\mathrm{C} 9^{\mathrm{ii}}\) & \(180.0(3)\) \\
\hline
\end{tabular}

\footnotetext{
Symmetry code: (ii) \(1-x,-y, 2-z\).
}

Table 2
Intermolecular contacts ( A ).
\begin{tabular}{llll}
\hline \(\operatorname{Br} 1 \cdots \mathrm{Br} 1^{\mathrm{iii}}\) & \(3.752(3)\) & \(\operatorname{Br} 1 \cdots \mathrm{Br}^{\mathrm{iv}}\) & \(3.752(3)\) \\
\hline
\end{tabular}

Symmetry codes: (iii) \(\frac{9}{2}-x, y-\frac{1}{2}, \frac{3}{2}-z\); (iv) \(\frac{9}{2}-x, \frac{1}{2}+y, \frac{3}{2}-z\).
H atoms were positioned geometrically and treated as riding, with \(\mathrm{C}-\mathrm{H}\) distances of \(0.95 \AA\) and \(U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\) (parent).

Data collection: MSCIAFC Diffractometer Control Software (Molecular Structure Coorporation, 1992); cell refinement: MSC/ AFC Diffractometer Control Software; data reduction: CrystalStructure (Molecular Structure Coorporation \& Rigaku, 2001); program(s) used to solve structure: SIR92 (Altomare et al., 1994); program(s) used to refine structure: CRYSTALS (Watkin et al., 1996); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: CrystalStructure.

The authors express their gratitude to Mr K . Uno and Mr H . Shimizu for their support.

\section*{References}

Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Burla, M. C., Polidori, G. \& Camalli, M. (1994). J. Appl. Cryst. 27, 435.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Higashi, T. (1999). NUMABS. Rigaku Corporation, Tokyo, Japan.
Kobayashi, H., Yamamoto, T. \& Nakamura, N. (1995). Cryst. Res. Technol. 30, 275-280.
Kulpe, S., Seidel, I., Szulzewsky, K., Steger, U. \& Steger, E. (1981). Cryst. Res. Technol. 16, 349-356.
Larson, A. C. (1970). Crystallographic Computing, edited by F. R. Ahmed, S. R. Hall \& C. P. Huber, pp. 291-294. Copenhagen: Munksgaard.

Michaud, F., Ventolà, L., Calvet, M. T., Cuevas-Diarte, M. A., Solans, X. \& Font-Bardía, M. (2000). Acta Cryst. C56, 219-221.
Molecular Structure Corporation (1992). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation \& Rigaku (2001). CrystalStructure. Version 3.10. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA, and Rigaku Corporation, 3-9-12 Akishima, Tokyo 196-8666, Japan.
Nakamura, N., Uno, K. \& Ogawa, Y. (2001). Acta Cryst. E57, o1091o1093.
Nakamura, N., Yamamoto, T., Kobayashi, H. \& Yoshimura, Y. (1993). Cryst. Res. Technol. 28, 953-957.
Nyburg, S. C. \& Gerson, A. R. (1992). Acta Cryst. B48, 103-106.
Ogawa, Y. \& Nakamura, N. (1999). Bull. Chem. Soc. Jpn, 72, 943-946.
Rosen, L. S. \& Hybl, A. (1972). Acta Cryst. B28, 610-617.
Rowland, R. S. \& Taylor, R. (1996). J. Phys. Chem. 100, 7384-7391.
Takamizawa, K., Kodama, M., Matsunaga, S. \& Shiokawa, K. (1992). Eng. Sci. Rep. Kyushu Univ. 13, 341-347.
Thalladi, V. R., Boese, R. \& Weiss, H. C. (2000). Angew. Chem. Int. Ed. 39, 918-922.
Uno, K. \& Nakamura, N. (2003). Acta Cryst. E59, o708-o710.
Uno, K., Nakamura, N. \& Ogawa, Y. (2002). Acta Cryst. A58 (Suppl.), C-338.
Watkin, D. J., Prout, C. K., Carruthers, J. R. \& Betteridge, P. W. (1996). CRYSTALS. Issue 10. Chemical Crystallography Laboratory, University of Oxford, England.```

